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Numerical simulation of vortex-induced vibration of a circular
cylinder with low mass-damping in a turbulent flow
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Abstract

In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically

mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex

shedding around the cylinder is investigated numerically by the incompressible two-dimensional Reynolds-Averaged

Navier–Stokes (RANS) equations. These equations are written in a primitive formulation in which the Cartesian

velocity components and pressure share the same location at the center of the control volume. The numerical method

uses a consistent physical reconstruction for the mass and momentum fluxes: the so-called consistent physical

interpolation (CPI) approach in a conservative discretization using finite volumes on structured grids. The turbulence

modeling is carried out by the SST K–o model of Menter (AIAA 24th Fluid Dynamics Conference, Orlando, FL,

USA). The numerical results are compared with the 1996 experimental results of Khalak and Williamson (J. Fluids

Struct. 10 (1996) 455). The Reynolds number is in the range 900–15 000, the reduced velocity is including between 1.0

and 17.0. The mass ratio is 2.4 and the mass-damping is 0.013. Several initial conditions are used. According the initial

condition used, the simulations predict correctly the maximum amplitude. On the other hand, the numerical results do

not match the upper branch found experimentally. However, these results are encouraging, because no simulations have

yet predicted such a high amplitude of vibration.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Vortex shedding behind bluff bodies arises in many fields of engineering, such as heat exchanger tubes, marine cables,

flexible risers in petroleum production and other marine applications, bridges, and chimneys stacks. These examples are

only a few of a large number of problems where vortex-induced vibrations are important. The practical significance of

vortex-induced vibrations has led to a large number of fundamental studies [see Sarpkaya (1979); Griffin and Ramberg

(1982); Bearman (1984); Parkinson (1989); Blevins (1977)]. The case of an elastically mounted cylinder vibrating as a

result of fluid forcing is one of the most basic and revealing cases in the general subject of vortex-induced bluff–body

fluid–structure interactions. Consequently, determination of the unsteady forces on the cylinder is of central importance

to the dynamics of such interactions. Despite the extensive force measurements for a cylinder undergoing transverse-

forced vibration, there have appeared no direct lift-force measurements in the literature for an elastically mounted

arrangement. Sarpkaya (1995) recently presented a set of drag measurements for a cylinder which can oscillate both in-

line and transverse to the flow. We should also note that Hover et al. (1997) have developed a novel feedback control

system to study free motions. Khalak and Williamson (1997) have presented new force measurements of lift and drag
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for a hydroelastic cylinder of very low mass and damping. Consequently, for numerics, comparisons of forces with

experimental data are difficult.

Vortex-induced vibration is generally associated with the so-called ‘‘lock-in’’ phenomenon where the motion of the

structure is believed to dominate the shedding process, thus synchronizing the shedding frequency. Lock-in is

characterized by a shifting of the vortex shedding frequency ð fsÞ to the system natural frequency ð fnÞ ð fsBfnÞ: Lock-in
can also refer to the coalescence of the shedding, the cylinder oscillation and natural frequency ð fsBfBfnÞ: Numerous

studies in vortex-induced vibration literature support the existence of lock-in [e.g., Griffin et al., (1973);

Anagnostopoulos and Bearman (1992); Goswami et al., (1993); Brika and Laneville (1993); Blackburn and Henderson

(1996); Fujarra et al., (1998)]. However, Gharib (1999) has noted the absence of lock-in behavior from almost all

experimental studies for small mass ratios [m�=(oscillating mass)/(displaced fluid mass)]. In almost all the literature,

the problem of vortex-induced vibration of a cylinder with a large mass ratio has been well studied. However, there

remain some rather basic questions concerning vibration phenomena under the conditions of very low mass and

damping, for which there are few laboratory investigations. As one reduces the mass ratio to 1% of the value used in the

classical study of Feng (1968), it is of significant and fundamental interest to know what is the dominant response

frequency during excitation, what is the range of normalized velocity for significant oscillations or lock-in, and what is

the amplitude of response as a function of normalized velocity?

Recently, Govardhan and Williamson (2000) published a review for these phenomena. Their experiments show

that there exists two distinct types of response for the transverse oscillations of an elastically mounted rigid cylinder.

At low mass-damping, they find three amplitude response branches, denoted ‘‘the initial branch’’,‘‘ the upper branch’’

and ‘‘the lower branch’’. At high mass-damping, corresponding to the classical experiments of Feng (1968), only

two branches exist; the upper branch is absent. At low mass-damping, the transitions between the modes of response

are discontinuous. The mode change between initial and upper response branches involves a hysteresis. This contrasts

with the intermittent switching of modes for the transition between upper–lower branches. Much recent two-

dimensional numerical studies with low mass-damping or even with zero damping (Blackburn and Karniadakis 1993)

and (Newman and Karniadakis 1997)) give amplitude results very similar ðA=D ¼ 0:6Þ but smaller than the expected

values. For these simulations, the Reynolds number typically used is Re ¼ 100� 200: In the simulations of Saltara et al.

(1998) and Evangelinos (1999), the Reynolds number is higher, Re ¼ 1000; and the amplitude reaches values

of A=D ¼ 0:7: But all these simulations are carried out for low Reynolds numbers. This is contrasted with typical values

of Re ¼ 103 � 105 for the experimental data. It seems that only the lower branch of amplitudes is picked up by

the numerical simulations and the upper branch is absent. Recently, Blackburn et al. (2001) presented compu-

tations which predict the upper branch. However, these authors do not predict the amplitude of the experimental

upper branch.

The main objective of this paper is to investigate numerically the dynamics and fluid forcing on an elastically

mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The numerical

results are compared with the experimental data obtained by Khalak and Williamson (1996).

2. Governing equations

2.1. Fluid modeling

The aim is a computational study to predict the two-dimensional fluid motion induced by the oscillation of a circular

cylinder. Equations are presented throughout in nondimensional form. The velocity scale is the reference velocity, UN;
the length scale is the cylinder diameter, D; and time is nondimensionalized by the aerodynamic scale D=UN:
The unsteady incompressible Reynolds-averaged Navier–Stokes equations can be written in the following strong-

conservation form, in the inertial system, i.e., the frame connected to the laboratory:

r � U ¼ 0; ð1Þ

@U

@t
þr � F ¼ 0 ð2Þ

with the Cartesian components, Fkj ; given by

Fkj ¼ ðUj � #UjÞUk þ djkP �
1

Re

@Uk

@xj

þ ujuk: ð3Þ
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They involve the Cartesian velocity components Uk; the mesh velocity #Uj ; the pressure P; the Reynolds stress tensor

components ujuk; the Reynolds number Re ¼ UND=n; where n is the kinematic viscosity of fluid, and the Kronecker

symbol dij :
The resulting turbulent closure problem is solved by means of an Newtonian model as follows:

ujuk ¼ �nt

@Uj

@xk

þ
@Uk

@xj

� �
þ
2

3
Kdjk: ð4Þ

The eddy viscosity, nt; is given by the turbulence model, while the contribution of the turbulent kinetic energy K is

simply neglected if the model does not use this variable. In this study, we use only the shear-stress transport (SST)

K � o model of Menter (1993). This model solves one equation for the turbulent kinetic energy K and a second

equation for the specific turbulent dissipation rate o: This model is a low-Reynolds number model. Consequently, we

do not use wall functions.

For the applications to be considered, the complexity of the geometry prevents the use of Cartesian coordinates.

Numerical coordinate transformations are required in order to facilitate the application of boundary conditions and

transform the physical domain in which the flow is studied into a rectangular domain fx1; x2g: This computational

domain consists of a set of unique squares of sides Dxi ¼ 1; i ¼ 1; 2:
This partial transformation of Eqs. (1)–(3) yields the following equations:

1

J

@bi
j Uj

@xi
¼ 0; ð5Þ

@Uk

@t
þ

1

J

@bi
j Fkj

@xi
¼ 0 ð6Þ

with

Fkj ¼ ðUj � #UjÞUk þ P þ
2

3
K

� �
djk �

am
j

Reff

@Uk

@xm � nt an
k

@Uj

@xn ; ð7Þ

where Reff is equal to 1=Reþ nt and the Jacobian J of the transformation from the computational space of the

coordinates fxig to the physical space of the Cartesian coordinates fxig can be expressed by Jdj
i ¼ ai � bi: The area

vector b is given by b ¼ aj 
 ak (i; j; k in cyclic order) and the modulus of the covariant vector ai by ai ¼ @R=@xi; where,
R is the position vector.

The boundary condition on the cylinder surface is the no-slip condition

Ui ¼ #Ui: ð8Þ

The mesh moves in block and we assume that the outer boundary is far; so the fluid is not influenced by the movement.

Hence, at the outer boundary, the velocity U is

U1 ¼ UN; U2 ¼ 0: ð9Þ

The boundary conditions for the turbulent quantities are similar to those published by Menter (1993). The following

choice of free-stream value is used:

oN ¼ 1; ntN ¼ 10�3; KN ¼ oN ntN : ð10Þ

Boundary conditions at no-slip surfaces are given by the following relationships:

K ¼ 0 and o ¼ 10
6

0:075 ReðDyÞ2

� �
; ð11Þ

where Dy is the distance of the first point away from the wall.

2.2. Structural dynamic modeling

Considering motion is in the transverse direction only and assuming rigid body motion, the equation of motion

generally used to represent vortex-induced vibration is

m .Y þ c ’Y þ k Y ¼ FY ; ð12Þ

where Y is the transverse cylinder displacement, m the oscillating structural mass, c the structural damping, k the

structural stiffness and FY the fluid force in the transverse direction.
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Using the following set of nondimensional variables

U� ¼
UN

fnD
; m� ¼

m

md

;

z ¼
c

ccrit
¼

c

2
ffiffiffiffiffiffiffi
km

p ;
k

m
¼ ð2pfnÞ

2; ð13Þ

where z the structural damping ratio, U� the reduced velocity or the normalized velocity, m� the ratio mass, fn the

natural frequency and md the displaced fluidmass ðmd ¼ p
4
rD2Þ; the nondimensional equation of motion for the cylinder

can be written as

.y þ
4pz
U� ’y þ

2 p
U�

� �2

y ¼
2

p
CL

m�; ð14Þ

with y is the nondimensional transverse cylinder displacement and CL the lift coefficient. We assume that the force term

of the right-hand side of the equation is a constant within a time step as long as the time step is small enough. Eq. (14) is

integrated in time using a fourth-order Runge–Kutta algorithm, once the force coefficient is known from the flow field

calculation.

3. Numerical approach

3.1. Discrete equations

The collocated cell-centered grid lay-out is used. So, the Cartesian velocity components and the pressure share the

same location at the center of the control volume (Fig. 1).

In the following, UkðNNÞ will be the unknown kth Cartesian velocity component at point NN and the flux at cell

interface pN is identified as ðJUiÞðpNÞ: The discrete divergence of the flux f over the control volume is simply

ðDi fiÞðNNÞ ¼ f1ðpNÞ � f1ðmNÞ þ f2ðNpÞ � f2ðNmÞ; ð15Þ

so that the discrete continuity equation results from f ¼ bi � U :
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Fig. 1. Schematic sketch of presently used notation and influence stencil of point NN for CPI method.
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The time derivative is discretized using a second-order accurate fully implicit backward Euler method, involving the

time levels t0 ¼ t � Dt and t00 ¼ t � 2Dt besides the actual time level t: We then have

@f
@t

E e1Fþ e0F0 þ e00F00;

e1 ¼
3

2Dt
; e0 ¼ �

2

Dt
; e00 ¼

1

2Dt
;

F ¼ fðtÞ; F0 ¼ fðt0Þ; F00 ¼ fðt00Þ: ð16Þ

Eq. (15) and (16) yields the following motion equations:

1

JðNNÞ
Diðbi

jUjÞðNNÞ ¼ 0; ð17Þ

e1UkðNNÞ þ e0U0
k ðNNÞ þ e00U00

k ðNNÞ þ
1

JðNNÞ
Diðbi

j FkjÞðNNÞ ¼ 0: ð18Þ

In the discrete divergence at point NN in Eq. (18), the linearized momentum flux biFk is defined at interfaces pN; mN ;
Np and Nm as indicated in Eq. (15). For instance, we have

biFkðpNÞ ¼ ½bi � ðU� � #UÞUk þ P þ
2

3
K

� �
bi

k �
bi � am

Reff

@Uk

@xm � nt bi � an @Uj

@xn

� �
ðpNÞ; ð19Þ

where U� is a prediction of the velocity field at the actual time. An iterative procedure is thus required at time t in order

to update U�; starting with U� ¼ U0:

3.2. The reconstruction problem

After integrating fluxes over the control volume, it appears that besides unknown nodal values of the Cartesian

velocity components, expressions such as Eq. (19) involve the values UkðpNÞ which are also unknown, but at points

which are not nodal points. These Cartesian velocity components are denoted by Ukð f Þ; where f is pN; mN; Np or Nm:
This introduces the so-called reconstruction problem: fluxes such as UkðpNÞ which are not defined at nodal points must

be expressed in terms of nodal unknowns. The interpolation procedure, which solves the reconstruction problem, must

avoid spurious pressure modes which may exist when collocated grids are used. One of the most efficient ways to

overcome this difficulty is to use a physical interpolation approach in which a velocity value such as UkðpNÞ is expressed
not only in terms of values of Uk at the neighboring nodes of pN ; the set of which (Fig. 1) is denoted NBðpNÞ ¼
fNN;PN;PM;PP;NP;NMg; but also in terms of values of other velocity components and pressure at NBðpNÞ: The
most classical approach in this respect is the Rhie and Chow interpolation (Rhie and Chow, 1983). Its drawbacks, as

well as those of another interpolation practice due to Schneider and Raw (1987), have been analyzed by Deng et al.

(1994a, b), where the so-called consistent physical interpolation (CPI) method is proposed. The application of the CPI

to unsteady laminar flows has been further developed by Deng et al. (1994a) for airfoil problems and extended to

turbulent flow by Guilmineau et al. (1997a).

The CPI method determines UkðpNÞ from the solution of the convective form of the momentum equations at point

pN: This interpolation involves the set of neighbors NBðpNÞ of influencing node (Fig. 1). For other interfaces of the

control volume, the sets of active neighbors are

NBðmNÞ ¼ fMN;NN;MP;NP;MM;MNg;

NBðNpÞ ¼ fNN ;NP;NM;PM;PN ;PPg;

NBðNmÞ ¼ fNN;PN ;MN;PM ;NM;MMg:

Upon substitution of closures written at pN ; mN; Np and Nm into the discrete momentum equation (18), where

relations such as Eq. (19) have been accounted for, we obtain the discrete scheme for the momentum equations where

the velocity and pressure unknowns are located only at NN and at the eight nodal neighbors of the set NBðNNÞ ¼
fMM;MN;MP;NM;NP;PM;PN ;PPg: The substitution of the same closures into Eq. (17) yields a discrete scheme for

a nine-point pressure equation. Its ensures a second-order accuracy and numerical stability (Deng et al., 1994b).

Another important feature of the CPI scheme is that it ensures both mass and momentum conservation over the same

control volume.
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3.3. Pressure-velocity coupling algorithm

The algorithm which yields a coupled solution of the momentum equation and the continuity equation is directly

inspired by the pressure implicit with splitting of operators (PISO) algorithm (Issa, 1985)

(a) initialize the velocity field and the pressure field at t ¼ t0;
(b) new time step t ¼ t þ Dt;
(c) start iterative procedure with Uk ¼ U0

k ; P ¼ P0; Ukð f Þ ¼ U0
k ð f Þ; K ¼ K0; o ¼ o0;

(d) compute the turbulent quantities from filed of step (c);

(e) compute the reconstruction coefficients from the flow field of step (c) and turbulence field of step (d);

(f) solve the momentum equations to obtain a new prediction for Uk;
(g) solve the continuity equation to obtain pressure P with coefficients obtained from step (e) and Uk from step ( f);

(h) correct the velocity field with coefficients from step (e), Uk from step ( f) and P from step (g);

(i) reconstruction at interfaces to get Ukð f Þ with coefficients from step (e), P from step (g) and Uk from step (h);

( j) if the nonlinear residuals are not low enough, go to step (c) and update the iteration count within the time step;

(k) solve the cylinder displacement equation;

(l) go to step (a) and update t:

4. Initial conditions

To start a computation at a normalized velocity U� and a Reynolds number Re given, we need to initialize the flow.

Thus, three initial conditions are used.

(i) Firstly, the condition denoted from rest. In this case, for each Reynolds number considered, the solution of vortex

shedding behind a fixed cylinder is attempted. When the lift force becomes periodic, the elastically mounted

cylinder is allowed to oscillate.

(ii) The second condition is called increasing velocity that is to say with the cylinder still oscillating, the wind speed is

increased by the next step and the process is repeated. In this case, we initialize a simulation for a reduced velocity

U� and a Reynolds number Re given with the solution obtained for a velocity U�0 and a Reynolds number Re�0;
with U�0oU� and Re�0oRe:

(iii) The last condition is called decreasing velocity. We carry out the same thing as for the increasing velocity condition,

but with U�0 > U� and Re�0 > Re: In the present study, the inception of decreasing velocity solution is from the

upper end of the increasing velocity branch.

5. Spatial grid independence

In order to establish a grid-independent solution, computations have been performed for several meshes with

202
 150; 252
 187; 302
 225; 352
 262; 402
 300 grids for a reduced velocity U� ¼ 4:33 and a Reynolds number

Re ¼ 3757: The r.m.s displacement, yrms and the maximum displacement, ymax; are presented in Table 1. The difference

in displacement between the coarse grid and the finest grid is 2% for the r.m.s. values and less than 3% for the

maximum value. Hence, all computational results are obtained on the 202
 150 grid mesh.
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Table 1

Displacement for U� ¼ 4:33 and Re ¼ 3757 (m�z ¼ 1:3
 10�2; m� ¼ 2:4)

Mesh yrms ymax

202
 150 0.410 0.582

252
 187 0.405 0.573

302
 225 0.402 0.568

352
 262 0.402 0.567

402
 300 0.402 0.567

Comparison of different grid resolutions.
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Fig. 2. Cylinder displacements at different reduced velocity with the increasing velocity condition ðm�z ¼ 1:3
 10�2; m� ¼ 2:4Þ:
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6. Results

6.1. Preamble

Before presenting results, some numerical parameters need to be specified. The equations are solved on an O-type

structured grid. A mesh with 202 points in the angular direction and 150 points in the radial direction is used. The first

points of the mesh in fluid are located at y ¼ 0:001D away from the wall what represents a maximum distance yþp0:6
for the range of Reynolds numbers considered. The outer flow boundary is located at 25 diameter lengths away from

the cylinder. A nondimensional time step, UNDt=D; equal to 0.005 is used.
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Fig. 3. Relative vibration amplitude with different initial conditions ðm�z ¼ 1:3
 10�2; m� ¼ 2:4Þ:
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Fig. 4. Cylinder displacement for U� ¼ 4:47 and Re ¼ 3876 with the increasing velocity initial condition

(m�z ¼ 1:3
 10�2; m� ¼ 2:4Þ: (a) U�0 ¼ 4:37; (b) U�0 ¼ 4:43:
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For each time step, a reduction of nonlinear residuals for the discrete momentum equations is required. By default,

we use a reduction by two orders of magnitude of nonlinear residuals of discrete momentum equations is carried out.

Also, the divergence of the velocity field is decreased between 10�6 and 10�9: These parameters were already used to
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Fig. 5. Forces at different reduced velocity with the increasing velocity condition (thick line = CD; thin line = CL)

(m�z ¼ 1:3
 10�2; m� ¼ 2:4Þ:
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compute the deep dynamic stall of a pitching NACA 0012 airfoil (Guilmineau et al., 1997b) and the deep dynamic stall

on several airfoil sections (Guilmineau et al., 1999).

6.2. Results

We focus on the forces and response associated with vortex-induced vibration of a rigid cylinder with low normalized

mass. This problem was experimentally analyzed by Khalak and Williamson (1996). The normalized velocity U� is

included in interval 1–17. The Reynolds number ranges from 900 to 15 000. Thus, the regime is turbulent. The

parameter set of the present investigation is m� ¼ 2:4; m�z ¼ 1:3
 10�2; 900pRep15 000 and 1:0pU�p17:0:
Fig. 2 presents cylinder displacements for different U� with the increasing velocity condition. The simulation starts

with the normalized velocity U� ¼ 1:124 (Fig. 2(a)) and the vibration amplitude of the cylinder is very small. The

amplitude of vibration increases as the reduced velocity increases (Fig. 2(b) and (c)). For U� ¼ 4:51 (Fig. 2(d)), the

highest oscillation amplitude occurs, the displacement of the cylinder is near to unity. After this normalized velocity, a
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Fig. 7. Variation of drag force with different initial conditions ðm�z ¼ 1:3
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drop-off of the displacement amplitude occurs, and the maximum displacement of the cylinder is near to 0.6 for several

values of the normalized velocity (Fig. 2(e) and (f)). Then, the vibration amplitude decreases as U� increases (Fig. 2(g)).

At the highest values of the normalized velocity, the cylinder almost does not vibrate at all (Fig. 2(h)).

The maximum amplitude for a given reduced velocity defines the response in Fig. 3. The experimental response is

characterized by the initial branch, the lower branch, which are basic results, but also by a separate upper branch. For

the three initial conditions, our simulations are in good agreement with experiment for the lower branch. The amplitude

for the lower branch is A=D ¼ 0:62; which is similar to the experimental value (Khalak and Williamson, 1996). On the

other hand, numerically, we do not match the upper branch. The maximum value of the amplitude of vibration of the

cylinder is obtained with the increasing velocity condition and A=D ¼ 0:98: Experimentally, this value is A=D ¼ 0:96:
With the other conditions, the maximum value of the amplitude is that of the lower branch. Thus, the response

amplitude depends upon the initial condition; so, this characterizes a hysteresis phenomenon. The results obtained with

the three conditions are similar to the experimental results of Brika and Laneville (1993), where m� ¼ 180 and m�z ¼
0:036 for the Reynolds numbers ranging between 3400 and 11 800: However, results obtained with the increasing

velocity condition, like in the experiment, are good because, in the literature, no simulation did predict an amplitude of

vibration so high, even with moderate Reynolds numbers and low mass-damping (Khalak and Williamson, 1999).

To obtain the response given with the increasing velocity condition, we must use small steps of the reduced velocity.

Indeed, if for U� ¼ 4:47; one uses like initial condition the flow obtained for U� ¼ 4:37; the amplitude tends towards

the lower branch (Fig. 4(a)). On the other hand, if the initial condition is the flow obtained for U� ¼ 4:43; the amplitude

of vibration grows slightly (Fig. 4(b)).

Fig. 5 presents forces for different reduced velocity U� with the increasing velocity condition. At U� ¼ 1:124
(Fig. 5(a)), forces are extremely regular. The drag fluctuations are weaker than the lift fluctuations. At U� ¼ 3:63
(Fig. 5(b)), the transitional regime is not periodic. The drag and lift fluctuations increases as the reduced velocity increases.

At U� ¼ 4:51 (Fig. 5(d)), that is to say when the cylinder reaches the maximum vibration amplitude, the force fluctuations

are the more significant. After this normalized velocity, the fluctuations decrease as the reduced velocity increases. At

U� ¼ 11:0 (Fig. 5(g)), forces are not periodic. At U� ¼ 17:21 (Fig. 5(h)), the drag fluctuations is almost nonexistent.

Force variations versus the reduced velocity are shown in Figs. 6 and 7 for the three initial conditions. The drag

coefficient differs according to the conditions used. The drag coefficient reaches a maximum CDmax of 8.5 with mean %CD

of around 7.5 for the decreasing velocity condition. This is five-fold increase over the stationary case. With the increasing

velocity condition, CDmax is 4.22 and %CD is 3.0. The lift force CLmax reaches 1.6, which corresponds to a maximum r.m.s.

value, CLrms ; near to 1.1 with the decreasing velocity condition. With the increasing velocity condition, the value CLmax is

2.9 with a r.m.s. value CLrms
of 2.1. This r.m.s. value is comparable to the value of Khalak and Williamson (1997), who

used the same initial condition in their experiments and m� ¼ 3:3: For low values of normalized velocity, the drag

coefficient is identical with the from rest and increasing velocity conditions whereas with the decreasing velocity

condition, it is much higher (five-fold approximatively). While for high values of U� the drag is identical between the

increasing velocity and decreasing velocity conditions, and higher than that obtained with the from rest condition by a
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Fig. 8. Frequency response with different initial conditions (m� ¼ 2:4 and m�z ¼ 0:013).

E. Guilmineau, P. Queutey / Journal of Fluids and Structures 19 (2004) 449–466 459



factor of more than two. On the other hand, the curves representing the lift coefficient are almost identical, except

during the transition from the branches. These results obtained for drag are not understood.

Fig. 8 presents the frequency ratio, f � ¼ fc=fn where fc is the body oscillating frequency during induced vibration.

Over the synchronization range U� ¼ 4–11, the frequency f � is not precisely equal to unity, contrary to f � being close

to unity for large mass m�: The frequency f � rises to the value 1.15, which is weaker than the experimental value 1.4

(Khalak and Williamson, 1999). Similar results are being found for an elastically mounted cylinder in Khalak and

Williamson (1997) and Gharib (1999). The extensive ‘‘added mass’’ coefficients would suggest that oscillation

frequencies at large amplitude would expected to depart from unity (Khalak and Williamson, 1999).

The different branches of amplitude response are well characterized by plotting not only the amplitude but also the

phase plane portraits of lift versus displacement. The Lissajou representations are presented in Fig. 9. Figs. 9(a) and (b)

present the phase graphs for the initial branch. These figures indicate the periodic nature of the oscillation. Figs. 9(c)

and (d) present the phase graphs for the lower branch. We can see that the graph orientation is different which implies a

variation of the phase angle between lift and displacement.

The phase angle, f; between the lift force and displacement is showed in Fig. 10. For all initial conditions, the shape

of the curve is similar. The jump in phase is associated at the drop off of the amplitude response. Before to leave the

lower branch, the phase decreases slightly for U� ¼ 10:5 and increases after this normalized velocity.
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Fig. 9. Phase planes at different reduced velocity with the increasing velocity initial condition ðm�z ¼ 1:3
 10�2; m� ¼ 2:4Þ:
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Fig. 11 shows the instantaneous vorticity contours when the cylinder is at the lower position. Initially, the vortex is

shed from the upper surface of the cylinder (Figs. 11(a) and (b)). We can see also the 2S mode wake structure, according

to the interpretation of Williamson and Roshko (1988). In the 2S mode, two vortices are generated per oscillation cycle.

As U� increases, the vortex is shed by the lower surface of the cylinder (Figs. 11(c) and (d)). A switch of vortex-

shedding occurred. At the reduced velocity U� ¼ 5:88; that is to say on the lower branch, the wake structure is a 2P

mode. In the 2P mode, two vortex pairs are formed per cycle. Associating the 2P mode to the lower branch have been
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Fig. 11. Instantaneous vorticity contours for different reduced velocity with the increasing velocity initial condition (m� ¼ 2:4 and

m�z ¼ 0:013): ——, positive values; - - -, negative values. In all frames, the location of the cylinder is at its extreme lower position.
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Fig. 10. Phase angle with different initial conditions (m� ¼ 2:4 and m�z ¼ 0:013).
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Fig. 12. Mean flow for different reduced velocity with the increasing velocity initial condition (m� ¼ 2:4 and m�z ¼ 0:013).

Fig. 13. Pattern of the mean flow at U� ¼ 17:21 and Re ¼ 14 923 with the from rest and increasing initial conditions (m� ¼ 2:4 and

m�z ¼ 0:013).

Fig. 14. Isopressure lines for the mean flow with the from rest and increasing velocity initial conditions at U� ¼ 17:21 and Re ¼ 14 923

(m� ¼ 2:4 and m�z ¼ 0:013): ——, positive values; - - -, negative values.
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already noted by Brika and Laneville (1993). It appears that for the 2P mode, the vortices expand more laterally than

for the 2S mode. At U� ¼ 11:55; after the lower branch, the pattern is similar to the flow structure at U� ¼ 3:63; but
out of phase, owing to the vortex switching.

Fig. 12 presents the mean flow for different reduced velocity. In the initial branch (Fig. 12(a)), a vortex-shedding

exists. At the normalized velocity U� ¼ 4:50 (Fig. 12(b)), i.e. near the reduced velocity where the cylinder oscillates the

more, the flow is attached to the cylinder. And when the reduced velocity increases, the for the lower branch, the flow

separates but remains attached to the cylinder. The recirculation length increases as the reduced velocity increases.

We saw that for high values of the reduced velocity, the drag differs according to the initial conditions used whereas

the lift is identical. We are interested in the results obtained with from rest and increasing velocity conditions for the

normalized velocity U� ¼ 17:21 and Re ¼ 14923: Fig. 13 presents the streamlines for the mean flow. We observe that

the structure of the flow is identical in both cases. However, the flow obtained with the increasing velocity condition is

less intense than that obtained with the from rest condition. This is visible in Fig. 14 which presents the isopressure lines

of the mean flow. One realizes that the pattern of the isopressure lines are identical in both cases, but the extrema are

different. If we split the lift coefficient into a viscous part and a pressure part (see Fig. 15), for both initial conditions, we

can see any difference. Now, if we split the drag coefficient into viscous part and pressure part (see Fig. 16), the viscous

part is identical for both initial conditions, but the pressure part is different. The pressure drag obtained with the

increasing velocity conditions is higher than the pressure drag obtained with the from rest condition.

7. Conclusions

This numerical study of vortex-induced vibrations of a circular cylinder with low mass-damping shows the steady

response of the cylinder is a hysteresis phenomenon. Three initial conditions have been used: from rest, increasing

velocity and decreasing velocity. According these initial conditions, the response of the cylinder differs. With the from
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Fig. 15. Viscous and pressure lift coefficient with the from rest and increasing velocity initial conditions at U� ¼ 17:21 and Re ¼
14 923 (m� ¼ 2:4 and m�z ¼ 0:013).
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rest and decreasing velocity conditions, the simulations predict only the lower branch. On the other hand, with the

increasing velocity condition, the maximum vibration amplitude corresponds to the experimental value, but the upper

branch does not match experiment. To obtain this value, we had use small steps of the reduced velocity. All simulations

predict correctly the amplitude of vibration on the lower branch. However, these results are encouraging, because no

simulations have predicted such a high amplitude of vibration (Khalak and Williamson, 1999).

Flow visualization of the modes indicates that the initial branch is associated with the 2S mode of vortex formation,

while the lower branch corresponds with the 2P mode. These remarks have been confirmed experimentally by Brika and

Laneville (1993).

The response of forces on the cylinder is also an hysteresis phenomenon, particularly for the drag. In fact, the drag

coefficient differs according to the initial condition used. For a low reduced velocity, drag obtained with the simulation

with the decreasing velocity initial condition is five times as high as the one obtained with the simulation with the from

rest or increasing velocity initial conditions. On the other hand, for a high-reduced velocity, the simulations give the

same drag coefficient for the simulations used the increasing velocity or decreasing velocity initial conditions. This is a

two-fold increase over the value obtained with the from rest initial condition. But, the lift coefficient is identical for all

initial conditions. However, for a normalized velocity, the flow structure is identical independently of the initial

conditions, but the flow is more or less intense according to the initial condition used. These results obtained for drag

are not understood and these phenomena suggest validations from experimental measurements are needed.

Acknowledgements

The authors gratefully acknowledge the Scientific Committee of IDRIS (projects 00.0129 and 01.0129) for the

attribution of CPU time on the Nec SX5 of IDRIS. The authors are also grateful to Charles H.K. Williamson for

placing his experimental data at our disposal and for helpful discussions.

ARTICLE IN PRESS

Fig. 16. Viscous and pressure drag coefficient with the from rest and increasing velocity initial conditions at U� ¼ 17:21 and Re ¼
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